Individual attribute prior setting methods for naïve Bayesian classifiers

نویسندگان

  • Tzu-Tsung Wong
  • Liang-Hao Chang
چکیده

The generalized Dirichlet distribution has been shown to be a more appropriate prior for naı̈ve Bayesian classifiers, because it can release both the negative-correlation and the equal-confidence requirements of the Dirichlet distribution. The previous research did not take the impact of individual attributes on classification accuracy into account, and therefore assumed that all attributes follow the same generalized Dirichlet prior. In this study, the selective naı̈ve Bayes mechanism is employed to choose and rank attributes, and two methods are then proposed to search for the best prior of each single attribute according to the attribute ranks. The experimental results on 18data sets show that thebest approach is to use selective naı̈ve Bayes for filtering and ranking attributes when all of them have Dirichlet priors with Laplace’s estimate. After the ranks of the chosen attributes are determined, individual setting is performed to search for the best noninformative generalized Dirichlet prior for each attribute. The selective naı̈ve Bayes is also compared with two representative filters for the feature selection, and the experimental results show that it has the best performance. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Discretization and Hybrid feature selection using Naïve Bayesian classifier for Medical datamining

As a probability-based statistical classification method, the Naïve Bayesian classifier has gained wide popularity despite its assumption that attributes are conditionally mutually independent given the class label. Improving the predictive accuracy and achieving dimensionality reduction for statistical classifiers has been an active research area in datamining. Our experimental results suggest...

متن کامل

Application of the Naïve Bayesian Classifier to optimize treatment decisions.

BACKGROUND AND PURPOSE To study the accuracy, specificity and sensitivity of the Naïve Bayesian Classifier (NBC) in the assessment of individual risk of cancer relapse or progression after radiotherapy (RT). MATERIALS AND METHODS Data of 142 brain tumour patients irradiated from 2000 to 2005 were analyzed. Ninety-six attributes related to disease, patient and treatment were chosen. Attributes...

متن کامل

A Method to Boost Naïve Bayesian Classifiers

In this paper, we introduce a new method to improve the performance of combining boosting and naïve Bayesian. Instead of combining boosting and Naïve Bayesian learning directly, which was proved to be unsatisfactory to improve performance, we select the training samples dynamically by bootstrap method for the construction of naïve Bayesian classifiers, and hence generate very different or unsta...

متن کامل

GEC: An Evolutionary Approach for Evolving Classifiers

Using an evolutionary approach for evolving classifiers can simplify the classification task. It requires no domain knowledge of the data to be classified nor the requirement to decide which attribute to select for partitioning. Our method, called the Genetic Evolved Classifier (GEC), uses a simple structured genetic algorithm to evolve classifiers. Besides being able to evolve rules to classif...

متن کامل

A Novel Methodology for Constructing Rule-based Naïve Bayesian Classifiers

Classification is an important data mining technique that is used by many applications. Several types of classifiers have been described in the research literature. Example classifiers are decision tree classifiers, rule-based classifiers, and neural networks classifiers. Another popular classification technique is naïve Bayesian classification. Naïve Bayesian classification is a probabilistic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2011